导师风采 Supervisor's Information

文章正文
发布时间:2025-07-05 13:52

  Li, Y., Chen, C., & Ren, Y. (2022). A class of high-order finite difference schemes with minimized dispersion and adaptive dissipation for solving compressible flows. J. Comput. Phys., 448, 110770.

  Huang, Q., Ren, Y., & Wang, Q. (2021). High Order Finite Volume Schemes for Solving the Non-Conservative Convection Equations on the Unstructured Grids. J. Sci. Comput., 88, 37.

  Ren, Y., Tan, L., & Wu, Z. (2020). The shape of incident shock wave in steady axisymmetric conical Mach reflection. Advances in Aerodynamics, 2, 1-11.

  Wang, Q., Deiterding, R., Pan, J., & Ren, Y. (2020). Consistent high resolution interface-capturing finite volume method for compressible multi-material flows. Computers & Fluids, 202, 104518.

  Li, W., Wang, Q., & Ren, Y. (2020). A p-weighted limiter for the discontinuous Galerkin method on one-dimensional and two-dimensional triangular grids. J. Comput. Phys., 407, 109246.

  Li, Xue-Li, and Yu-Xin Ren. High Order Compact Generalized Finite Difference Methods for Solving Inviscid Compressible Flows. Journal of Scientific Computing 82.1 (2020): 1-38.

  Guo, Chenxi, and Yu-xin Ren. The computation of the pitch damping stability derivatives of supersonic blunt cones using unsteady sensitivity equations. Advances in Aerodynamics 1.1 (2019): 1-16.

  ZHANG, Yu-Si; REN, Yu-Xin; WANG, Qian. Compact high order finite volume method on unstructured grids IV: Explicit multi-step reconstruction schemes on compact stencil. Journal of Computational Physics, 2019, 396: 161-192.

  LI, Xue-Li; REN, Yu-Xin; LI, Wanai. Construction of the High Order Accurate Generalized Finite Difference Schemes for Inviscid Compressible Flows. Communications in Computational Physics, 2019, 25.2: 481-507.

  Zeng, W. G., Pan, J. H., Ren, Y. X., & Sun, Y. T. (2018). Numerical study on the turbulent mixing of planar shock-accelerated triangular heavy gases interface. Acta Mechanica Sinica, 34(5), 855-870.

  Jianhua, P. A. N., Qian, W. A. N. G., Zhang, Y., & Yuxin, R. E. N. (2018). High-order compact finite volume methods on unstructured grids with adaptive mesh refinement for solving inviscid and viscous flows. Chinese Journal of Aeronautics, 31(9), 1829-1841.

  Chen, Z., Huang, X., Ren, Y. X., Xie, Z., & Zhou, M. (2018). Mechanism-Derived Shock Instability Elimination for Riemann-Solver-Based Shock-Capturing Scheme. AIAA Journal, 56(9), 3652-3666.

  Chen, Z., Huang, X., Ren, Y. X., Xie, Z., & Zhou, M. (2018). Mechanism Study of Shock Instability in Riemann-Solver-Based Shock-Capturing Scheme. AIAA Journal, 56(9), 3636-3651.

  LI, Wanai; PAN, Jianhua; REN, Yu-Xin. The discontinuous Galerkin spectral element methods for compressible flows on two-dimensional mixed grids. Journal of Computational Physics, 2018, 364: 314-346.

  ZENG, Wei-Gang, et al. Turbulent mixing and energy transfer of reshocked heavy gas curtain. Physics of Fluids, 2018, 30.6: 064106.

  HUANG, Wen-Feng, et al. High Resolution Finite Volume Scheme Based on the Quintic Spline Reconstruction on Non-uniform Grids. Journal of Scientific Computing, 2018, 74.3: 1816-1852.

  HUANG, Wen-Feng; REN, Yu-Xin; JIANG, Xiong. A simple algorithm to improve the performance of the WENO scheme on non-uniform grids. Acta Mechanica Sinica, 2018, 34.1: 37-47.

  Zhu, Y., Sun, Z., Ren, Y., Hu, Y., & Zhang, S. (2017). A numerical strategy for freestream preservation of the high order weighted essentially non-oscillatory schemes on stationary curvilinear grids. Journal of Scientific Computing, 72(3), 1021-1048.

  PAN, Jianhua; REN, Yu-xin; SUN, Yutao. High order sub-cell finite volume schemes for solving hyperbolic conservation laws II: Extension to two-dimensional systems on unstructured grids. Journal of Computational Physics, 2017, 338: 165-198.

  PAN, JianHua; REN, YuXin. High order sub-cell finite volume schemes for solving hyperbolic conservation laws I: basic formulation and one-dimensional analysis. SCIENCE CHINA Physics, Mechanics & Astronomy, 2017, 60.8: 084711.

  WANG, Qian, et al. Compact high order finite volume method on unstructured grids III: Variational reconstruction. Journal of Computational physics, 2017, 337: 1-26.

  Chen, Z., Huang, X., Ren, Y. X., & Zhou, M. (2017). General procedure for Riemann solver to eliminate carbuncle and shock instability. AIAA Journal, 55(6), 2002-2015.

  WANG, Qian; REN, Yu-Xin; LI, Wanai. Compact high order finite volume method on unstructured grids II: Extension to two-dimensional Euler equations. Journal of Computational Physics, 2016, 314: 883-908.

  WANG, Qian; REN, Yu-Xin; LI, Wanai. Compact high order finite volume method on unstructured grids I: Basic formulations and one-dimensional schemes. Journal of Computational Physics, 2016, 314: 863-882.

  SUN, Yutao, et al. A cell-centered Lagrangian method based on local evolution Galerkin scheme for two-dimensional compressible flows. Computers & Fluids, 2016, 128: 65-76.

  SUN, Zhen-sheng, et al. High order boundary conditions for high order finite difference schemes on curvilinear coordinates solving compressible flows. Journal of Scientific Computing, 2015, 65.2: 790-820.

  WANG, Qiuju; REN, Yu-Xin. An accurate and robust finite volume scheme based on the spline interpolation for solving the Euler and Navier–Stokes equations on non-uniform curvilinear grids. Journal of Computational Physics, 2015, 284: 648-667.

  Z.S. Sun, L. Luo, Y.X. Ren, S.Y. Zhang, A sixth order hybrid finite difference scheme based on the minimized dispersion and controllable dissipation technique, Journal of Computational Physics, Volume 270, No.1(2014)

  W.A. Li, Y.X. Ren, The multi-dimensional limiters for discontinuous Galerkin method on unstructured grids, Computers & Fluids, Volume 96, 13 ,Pages 368–376 (2014)

  Q.J. Wang, Y.X. Ren, Z.S. Sun, Y.T. Sun, Low dispersion finite volume scheme based on reconstruction with minimized dispersion and controllable dissipation, Scinence in China, Physics, Mechanics & Astronomy, Vol.56 No.2: 423–431 (2013)

  W.A. Li, Y.-X. Ren, High order k-exact WENO finite volume schemes for solving gas dynamic Euler equations on unstructured grids, DOI:10.1002/fld.2710, Int. J. Numer. Meth. Fluids.(2012)

  W.A Li, Y.X. Ren, The multi-dimensional limiters for solving hyperbolic conservation laws on unstructured grids II: Extension to high order finite volume schemes,J. Comput. Phys., 231:  4053–4077 (2012)

  Li, WA, Ren, YX, Lei, GD, Luo, H, The multi-dimensional limiters for solving hyperbolic conservation laws on unstructured grids, J. Comput. Phys.  Vol. 230, 7775–7795, (2011)

  Sun, ZS ,  Ren, YX , Larricq, C , Zhang, SY , Yang, YC , A class of finite difference schemes with low dispersion and controllable dissipation for DNS of compressible turbulence, J. Comput. Phys.  Vol.230 No.12, 4616-4635, (2011)

  Sun, ZS , Ren, YX ,  Zhang, SY , Yang, YC , High-resolution finite difference schemes using curvilinear coordinate grids for DNS of compressible turbulent flow over wavy walls, Computers & Fluids  Vol.45   No.1 SI, 84-91, (2011)

  Sun, ZS, Ren, YX , Larricq, C , Drag reduction of compressible wall turbulence with active dimples, Science China-Physics Mechanics & Astronomy  Vol.54   No. 2,   329-337, (2011)

   Lei, GD ,  Ren, YX,   Computation of the stability derivatives via CFD and the sensitivity equations, Acta Mechanica Sinica  Vol. 27   No. 2, 179-188, (2011)

首页
评论
分享
Top